
UNIT – III

Data Manipulation with Pandas :

Pandas is a Python library.

Pandas is used to analyze data.

What is Pandas?

Pandas is a Python library used for working with data sets.

It has functions for analyzing, cleaning, exploring, and manipulating data.

The name "Pandas" has a reference to both "Panel Data", and "Python Data Analysis" and was

created by Wes McKinney in 2008.

Why Use Pandas?

Pandas allows us to analyze big data and make conclusions based on statistical theories.

Pandas can clean messy data sets, and make them readable and relevant.

Relevant data is very important in data science.

What Can Pandas Do?

Pandas gives you answers about the data. Like:

• Is there a correlation between two or more columns?

• What is average value?

• Max value?

• Min value?

Pandas are also able to delete rows that are not relevant, or contains wrong values, like empty

or NULL values. This is called cleaning the data.

Where is the Pandas Codebase?

The source code for Pandas is located at this github repository https://github.com/pandas-

dev/pandas

Installation of Pandas

If you have Python and PIP already installed on a system, then installation of Pandas is very

easy.

Install it using this command:

C:\Users\Your Name>pip install pandas

If this command fails, then use a python distribution that already has Pandas installed like,

Anaconda, Spyder etc.

Import Pandas

Once Pandas is installed, import it in your applications by adding the import keyword:

import pandas

Now Pandas is imported and ready to use.

Example

import pandas

mydataset = {

https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/python_pip.asp

 'cars': ["BMW", "Volvo", "Ford"],

 'passings': [3, 7, 2]

}

myvar = pandas.DataFrame(mydataset)

print(myvar)

Pandas as pd

Pandas is usually imported under the pd alias.

alias: In Python alias are an alternate name for referring to the same thing.

Create an alias with the as keyword while importing:

import pandas as pd

Now the Pandas package can be referred to as pd instead of pandas.

Example

import pandas as pd

mydataset = {

 'cars': ["BMW", "Volvo", "Ford"],

 'passings': [3, 7, 2]

}

myvar = pd.DataFrame(mydataset)

print(myvar)

Checking Pandas Version

The version string is stored under __version__ attribute.

Example

import pandas as pd

print(pd.__version__)

Pandas Series

What is a Series?

A Pandas Series is like a column in a table.

It is a one-dimensional array holding data of any type.

Example

Create a simple Pandas Series from a list:

import pandas as pd

a = [1, 7, 2]

myvar = pd.Series(a)

print(myvar)

Labels

If nothing else is specified, the values are labeled with their index number. First value has index

0, second value has index 1 etc.

This label can be used to access a specified value.

Example

Return the first value of the Series:

print(myvar[0])

Create Labels

With the index argument, you can name your own labels.

Example

Create your own labels:

import pandas as pd

a = [1, 7, 2]

myvar = pd.Series(a, index = ["x", "y", "z"])

print(myvar)

When you have created labels, you can access an item by referring to the label.

Example

Return the value of "y":

print(myvar["y"])

Pandas DataFrames

What is a DataFrame?

A Pandas DataFrame is a 2 dimensional data structure, like a 2 dimensional array, or a table

with rows and columns.

Example

Create a simple Pandas DataFrame:

import pandas as pd

data = {

 "calories": [420, 380, 390],

 "duration": [50, 40, 45]

}

#load data into a DataFrame object:

df = pd.DataFrame(data)

print(df)

Result

 calories duration

 0 420 50

 1 380 40

 2 390 45

Locate Row

As you can see from the result above, the DataFrame is like a table with rows and columns.

Pandas use the loc attribute to return one or more specified row(s)

Example

Return row 0:

#refer to the row index:

print(df.loc[0])

Result

 calories 420

 duration 50

 Name: 0, dtype: int64

Named Indexes

With the index argument, you can name your own indexes.

Example

Add a list of names to give each row a name:

import pandas as pd

data = {

 "calories": [420, 380, 390],

 "duration": [50, 40, 45]

}

df = pd.DataFrame(data, index = ["day1", "day2", "day3"])

print(df)

Result

 calories duration

 day1 420 50

 day2 380 40

 day3 390 45

Locate Named Indexes

Use the named index in the loc attribute to return the specified row(s).

Example

Return "day2":

#refer to the named index:

print(df.loc["day2"])

Result

 calories 380

 duration 40

 Name: 0, dtype: int64

Load Files Into a DataFrame

If your data sets are stored in a file, Pandas can load them into a DataFrame.

Example

Load a comma separated file (CSV file) into a DataFrame:

import pandas as pd

df = pd.read_csv('data.csv')

print(df)

Aggregation in Pandas

Aggregation in pandas provides various functions that perform a mathematical or logical

operation on our dataset and returns a summary of that function. Aggregation can be used to

get a summary of columns in our dataset like getting sum, minimum, maximum, etc. from a

particular column of our dataset. The function used for aggregation is agg(), the parameter is

the function we want to perform.

Some functions used in the aggregation are:

Function Description:

• sum() :Compute sum of column values

• min() :Compute min of column values

• max() :Compute max of column values

• mean() :Compute mean of column

• size() :Compute column sizes

• describe() :Generates descriptive statistics

• first() :Compute first of group values

• last() :Compute last of group values

• count() :Compute count of column values

• std() :Standard deviation of column

• var() :Compute variance of column

• sem() :Standard error of the mean of column

Examples:

• The sum() function is used to calculate the sum of every value.

Examples:

• The sum() function is used to calculate the sum of every value.

• Python

df.sum()

Output:

• The describe() function is used to get a summary of our dataset

• Python

df.describe()

Output:

• We used agg() function to calculate the sum, min, and max of each column in our

dataset.

• Python

df.agg(['sum', 'min', 'max'])

Output:

Grouping in Pandas

Grouping is used to group data using some criteria from our dataset. It is used as split-apply-

combine strategy.

• Splitting the data into groups based on some criteria.

• Applying a function to each group independently.

• Combining the results into a data structure.

Examples:

We use groupby() function to group the data on “Maths” value. It returns the object as result.

• Python

df.groupby(by=['Maths'])

Output:

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000012581821388>

Applying groupby() function to group the data on “Maths” value. To view result of formed

groups use first() function.

• Python

a = df.groupby('Maths')

a.first()

Output:

First grouping based on “Maths” within each team we are grouping based on “Science”

• Python

b = df.groupby(['Maths', 'Science'])

b.first()

Output:

Implementation on a Dataset

Here we are using a dataset of diamond information.

• Python

import module

import numpy as np

import pandas as pd

reading csv file

dataset = pd.read_csv("diamonds.csv")

printing first 5 rows

print(dataset.head(5))

Output:

• We group by using cut and get the sum of all columns.

• Python

https://www.kaggle.com/shivam2503/diamonds

dataset.groupby('cut').sum()

Output:

• Here we are grouping using cut and color and getting minimum value for all other

groups.

• Python

dataset.groupby(['cut', 'color']).agg('min')

Output:

• Here we are grouping using color and getting aggregate values like sum, mean,

min, etc. for the price group.

• Python

dictionary having key as group name of price and

value as list of aggregation function

we want to perform on group price

agg_functions = {

 'price':

 ['sum', 'mean', 'median', 'min', 'max', 'prod']

}

dataset.groupby(['color']).agg(agg_functions)

Output:

We can see that in the prod(product i.e. multiplication) column all values are inf, inf is the

result of a numerical calculation that is mathematically infinite.

